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Combined LARES-LAGEOS Solutions

Laser Relativity Satellite (LARES)
LARES is a new spherical geodetic satellite designed for

SLR observations. It is made of solid tungsten alloy

covered with 92 corner cubes (Fig.1). Due to a very small

area-to-mass ratio , the sensitivity of LARES

orbits to non-gravitational forces is greatly minimized.

We processed 82 weeks of LARES obser-

vations from a global SLR network and we analyzed the

contribution of LARES data to the current SLR products

(global scale, geocenter coordinates, station coordina-

tes, Earth rotation and gravity field parameters). The

quality of the combined LARES+LAGEOS-1/2 solutions is

also addressed.
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Fig: 1: LARES before embedding the corner

cube retro-reflectors (courtesy of ASI) .
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Tab: 1: Characteristics of geodetic SLR satellites. Draconitic years (time intervals between two

consecutive passes of the Sun through the satellite orbit), nodal and perigee´s drifts are estima-

ted on the basis of first order orbit perturbations. Secular decays of semi-major axes are estima-

ted on the basis of linear fit to time series of mean semi-major axes.

Fig: 2: Mean orbital eccentricity of LARES (the period of variations

corresponds to the period of the perigee drift: 376 days).

Fig: 3: Mean inclination of LARES (the period of variations

corresponds to the period of the nodal drift: 210 days).

Tab: 2: Perturbing accelerations acting on geodetic satellites.

Fig: 4: Mean semi-major axis of LARES with a linear fit. The estimated

secular decay is -0.775±0.143 m/year.
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Fig: 5: Correlation matrices of LAGEOS-1/2 (L51/L52), LARES-only (L60), and LARES+LAGEOS-1/2 weekly solutions. The matrices contain the

core station coordinates, satellites orbits, Earth rotation parameters, geocenter coordinates, and gravity field parameters up to

degree/order 6/6. All remaining parameters (range biases, pseudo-stochastic pulses, non-core station coordinates).were pre-eliminated
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Fig: 6: Scale of reference frame deri-

ved from the Helmert tranformation

of SLR core stations w.r.t. SLRF2008.

Fig: 7: Geocenter coordinates (Z and Y component) from the LAGEOS-1/2

and LARES+LAGEOS-1/2 solutions with respect to the SLRF2008. The X

geocenter coordinate does not show any major differences between solu-

tions, thus, it is not shown here.
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Fig: 8: Sensitivity of the SLR solutions to low-degree Earth gravity field parameters (C -S ) as

square roots of diagonal elements of normal equation systems. C
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LARES´ orbits
Table 2 shows the perturbing accelerations due to gravi-

tational and non-gravitational forces, as well as the gene-

ral relativistic perturbations acting on geodetic satelli-

tes. Comparing LARES and AJISAI (two satellites of simi-

lar altitudes), the impact of the gravitational accelera-

tions is nearly the same, whereas the impact of the non-

gravitational accelerations is about 22 times smaller for

LARES than for AJISAI. Thus, LARES orbits are remarkably

well suited for the recovery of the Earth´s gravity field or

for the verification of the Lense-Thirring effect.

Figures 2-4 show the evolution of LARES mean orbital

elements (eccentricity, inclination, semi-major axis,

respectively). The secular drift of the LARES semi-major

axis is mostly caused by the atmospheric drag, as oppo-

sed to the Yarkovsky effect for LAGEOS satellites.

Nevertheless, LARES´ drift is about 16 times smaller

than AJISAI´s drift. The residual LARES´ along-track acce-

leration is just -3E-12 ms , i.e., 47 times less than the

impact of the Lense-Thirring effect.
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Correlations
Figure 5 shows that the LAGEOS solutions are affected, in

particular, by the correlations between:

station coordinates & orbits,

orbits & Earth rotation parameters ,

orbits & zonal spherical harmonics (C , C , C ),

Length-of-Day (LoD) & even zonal spherical harmonics

of gravity field

All these correlations are substantially reduced in the com-

bined LARES+LAGEOS-1/2 solutions. On the other hand

the correlations between gravity field parameters (e.g.,

C &C &C , C &C &C ) are increased. This can be

solved by introducing more low-orbiting satellites (Fig. 8).
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Combined multi-satellite solutions
The scale and origin (geocenter coordinates) of the In-

ternational Terrestrial Reference Frame (ITRF) are defi-

ned by the SLR observations. Thus, the highest quality

of these parameters is crucial in the SLR solutions.

Figure 6 shows the scale from the LARES, LAGEOS, and

combined LARES+LAGEOS solutions with a correspon-

ding spectral analysis. The LARES-only scale is noisy

and shows some defficiencies in orbit modeling, name-

ly in modeling of the non-gravitational forces which

are reflected in the draconitic year of the LARES satelli-

te. The scale defined by LAGEOS-1/2 is stable, but also

shows the variations related to the draconitic year of

LAGEOS-2. The orbit modeling deficiencies are sub-

stantially reduced in the combined LARES+LAGEOS-1/2

solutions, resulting in the very stable scale estimates.

Figure 7 shows the geocenter coordinates (y- and z-

component as examples). It demonstrates that the

inclusion of LARES into a combined solution slightly

reduces the offset in the y-component w.r.t. SLRF2008.

Moreover, the recovery of gravity field parameters can

be greatly improved when including LARES data (Fig.8),

because of improved observation geometry and the

LARES´ large sensitivity to the Earth´s gravity field.

Conclusions
�

�

In the combined LARES+LAGEOS solutions, the

correlations between parameters are reduced

and the global scale is less affected by the deffi-

ciences in satellite orbit modeling.

A very small impact of non-gravitational forces

and high orbit stability of LARES will allow the

recovery of the Earth´s gravity field and the vali-

dation of the effects of general relativity.
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LAGEOS-1/2 AJISAI LARES Stella

Gravitational perturbations: [m/s^2] [m/s^2] [m/s^2] [m/s^2]

Earth's monopole 2.7 6.4 6.4 7.7

C20 1.0E-03 6.2E-03 6.3E-03 8.8E-03

C22 6.0E-06 3.6E-05 3.7E-05 5.1E-05

C66 8.6E-08 3.1E-06 3.1E-06 6.3E-06

C20 20 8.1E-13 1.5E-08 1.6E-08 1.1E-07

Attraction of Moon 2.1E-06 1.9E-06 1.9E-06 1.8E-06

Attraction of Sun 9.6E-07 9.6E-07 9.6E-07 9.6E-07

Attraction of Venus 1.3E-10 1.3E-10 1.3E-10 1.3E-10

General relativity: [m/s^2] [m/s^2] [m/s^2] [m/s^2]

Schwarzschild effect 2.8E-09 1.1E-08 1.1E-08 1.4E-08

Lense-Thirring effect 2.7E-11 1.3E-10 1.4E-10 1.8E-10

Geodetic precession 3.4E-11 4.2E-11 4.2E-11 4.3E-11

Non-gravitational perturbations: [m/s^2] [m/s^2] [m/s^2] [m/s^2]

Solar radiation pressure 3.2E-09 2.5E-08 1.1E-09 4.4E-09

Albedo+infrared radiation 4.4E-10 8.6E-09 3.9E-10 1.8E-09

Thermal reradiation 5.0E-11 4.1E-10 1.9E-11 6.9E-11

Light aberration 1.1E-13 1.1E-12 5.1E-14 2.0E-13

Atmospheric drag (min) 8.0E-15 3.0E-11 2.6E-12 5.0E-11

Atmospheric drag (max) 2.0E-13 5.9E-10 4.8E-11 5.0E-08


